
A Management Framework for WS-BPEL

Tammo van Lessen, Frank Leymann, Ralph Mietzner, Jörg Nitzsche,
and Daniel Schleicher

Institute of Architecture of Application Systems,
University of Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany
{tammo.van.lessen, frank.leymann, ralph.mietzner, joerg.nitzsche, daniel.schleicher}

@iaas.uni-stuttgart.de
http://www.iaas.uni-stuttgart.de/

Abstract

WS-BPEL is the standard to define executable business
processes in a Web service world. Numerous commercial
and open source BPEL engines exist on the market today
that allow the execution of process models defined in
BPEL. However, these execution engines only provide
access to process model and process instance data in
terms of proprietary APIs. In this paper we present an
approach that models BPEL process models and pro-
cess instances as resources and thus provides a uniform
access scheme for process model and process instance
data. This is crucial because access to process model
and process instance data is needed in different scenar-
ios that are of key relevance in enterprises today. These
scenarios include compliance checking, repair of faulted
business processes as well as real-time monitoring of
business processes. The lack of a uniform access scheme
to process model and process instance data hampers the
exchangeability of BPEL engines and therefore results
in a potential vendor lock-in.

1. Introduction

WS-BPEL provides a standardized way to describe

and execute business processes by orchestrating Web

services. BPEL processes are used today in various

scenarios ranging from credit application processes in

banking that involve human interaction, to fully auto-

mated processes in backend systems that orchestrate fine

granular Web services into higher level Web services.

Management of process models and instances is needed

for example for process repair, real-time monitoring and

compliance checking. For the purpose of process repair

an administrator needs for instance to examine processes

and to change variable values. Most of the BPEL engines

available today support management of both, process

models as well as process instances. However, there is

no standardized way in which process engines expose

their internal process instance and process model data

so that it can be used by external management tools and

frameworks.

In this paper we propose a uniform way to allow

engine external tools to access process instance and pro-

cess model data. We present an approach that allows

exposing process models and instances as standardized

resources which in fact prevents users from a vendor

lock-in. The resources can be accessed and modified

by external tools in a standardized manner. Exposing

process model and process instance data as resources

provides further advantages that are not captured by the

management capabilities of today’s BPEL engines. A

resource oriented management API allows applications

to subscribe to property changes of the standardized

resources representing process models and instances

instead of subscribing to a set of vendor specific pre-

defined events as it is the case with the current BPEL

engines. Thus, our approach enables implementing the

aforementioned scenarios once and exchange the under-

lying BPEL engine without the need of adapting appli-

cations using the management API. As a result, BPEL

engines become interchangeable and implementations

that are build on top of the management API of a BPEL

engine can be ported easily from one engine to the other.

The contribution of the management framework pro-

posed in this paper is to provide a uniform means to

retrieve and modify data from process instances that

are already running. Information about such process

instances needs to be retrieved or modified in case of

Sixth European Conference on Web Services

978-0-7695-3399-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ECOWS.2008.25

187

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 7, 2009 at 11:25 from IEEE Xplore. Restrictions apply.

unforseen occurrences. Such occurrences could for ex-

ample be the malfunction of a Web service that is utilized

by a process. In this case it could be necessary to put that

process from a faulty state back to a state where it can be

resumed. It is not our intention to describe a framework

for debugging processes, however, this general approach

can be used as a basis for such a framework.

The remainder of the paper is structured as follows.

Section 2 provides the required background information

about BPEL and resources in general. Related work is

presented in Section 3. The idea of representing BPEL

process models and instances as resources is motivated

and elaborated in Section 4. In Section 5 the use of the

unified interface for BPEL processes is illustrated. Sec-

tion 6 presents suitable technologies for implementing

the management framework and Section 7 presents a

prototypical implementation. Section 8 concludes the

paper and presents directions for future work.

2. Background

BPEL [3] is the standard for specifying business

processes in Web services (WS) environments and has

gained broad acceptance in industry and research. It

enables both, the composition of WSs [25] and render-

ing the composition itself as WSs providing a recur-

sive aggregation model for WSs. BPEL provides sev-

eral so called structured activities that facilitate describ-

ing the control flow between the interaction activities,

i.e. operations of WS. Data flow in BPEL is implicit;

data is stored in shared variables that are referenced

and accessed by interaction activities and manipulation

activities. BPEL processes are intended to support ro-

bust applications. Thus, transactionality and fault han-

dling are an integral part of BPEL. They are defined by

means of (i) scopes (units of work with compensation-

based recovery semantics), (ii) compensation handlers

(define how to compensate already completed activi-

ties in a custom manner) and (iii) fault handlers (define

how to proceed when faults occur). BPEL is designed

to be extensible. It enables defining custom activity

types using the extensionActivity mechanism

as well as custom data manipulation primitives via an

extensionAssignOperation. Additionally, ex-

tension elements and attributes can be defined for all

BPEL constructs. Well-known extensions to BPEL sup-

port human interactions (BPEL4People [1]) and use of

sub-processes (BPEL-SPE [18]).

A resource is in its abstract sense anything that has

identity. A resource can be an electronic document, an

image, a service or a collection of other resources. Ac-

cording to [5] not all resources are necessarily network

retrievable; e.g., human beings, corporations, and bound

books in a library can also be considered resources. Re-

sources typically represent a specific set of data. This

data can be rendered as documents (e.g. XML, HTML,

JSON, Atom,...) or can be made accessible via so called

resource properties which are basically specific views

on the resource content. Resources are commonly used

in Web architectures, i.e. in RESTful applications or in

WS-*. In WS-* environments, resources themselves are

rendered as WS-Resources [11] whereas their properties

are rendered according to the WS-ResourceProperties

specification [12]. Both specifications are part of the

WS-ResourceFramework (WSRF)1.

3. Related Work

Enterprise environments typically involve a huge

number of components, data silos, queues, connections

to legacy systems, etc. in a complex interplay. Being

able to guarantee a certain degree of reliability, availabil-

ity and other qualities of service, it is very important to

have the ability to monitor each component and its con-

nections to components it depends on. There exist man-

ifold solutions for managing and observing enterprise

components, such as SNMP [6] or the Java Management

Extensions (JMX) [16]. The latter allows exposing Java

beans as manageable resources, which have a unified

but domain specific interface. Manageable resources

encompass three concepts: attributes are exposed as

key-value pairs, rendering the status of the resource in

terms of well-typed values and the needed meta-data to

enable others to understand the meaning of the value.

While attributes mainly serve for monitoring purposes,

operations can be used to actively influence the state of

a resource, e.g. to shutdown a component. The third

feature allows monitoring/management applications to

subscribe to monitoring events. These can be used to

push alerts to observers.

The rise of BPEL especially in the field of SOA

(service-oriented architecture) leads to a shift of business

logic: While traditional systems have hard-coded busi-

ness logic with hard-coded dependencies, in SOA the

concept of loose coupling of self-contained services is

thoroughly implemented by inverting the dependencies

(Inversion of Control [10]). In Web Services environ-

ments such services are orchestrated to more complex

services using BPEL, i.e. the business logic is now man-

ifested in the BPEL process model. This makes it even

more important to expose BPEL processes as manage-

able resources and to fit them into global management

environments.

In its reference model, the Workflow Manage-

ment Coalition (WfMC) has standardized a set of in-

1http://www.oasis-open.org/committees/wsrf/

188

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 7, 2009 at 11:25 from IEEE Xplore. Restrictions apply.

terfaces that Workflow Management Systems should

implement. Interface 5 defines the requirements for a

service-oriented Auditing and Management interface

and describes methods to access audit data of process

instances, activity instances, work items and allows to

start/stop/configure process instances. It has been sub-

stantiated in [26] where C/C++ interfaces were defined.

Later it has been redefined using XML and ASAP [21]

in WfXML 2.0 [22]. More recently, a draft version

of WfXML-R [23] has been published which adapts

WfXML to expose its interface as a RESTful Web ser-

vice. Although the latter approach also renders process

models and instances as resources, the structure of re-

sources is not following the structure of the process

model and it currently does not allow manipulating at-

tributes of process instances and activities.

While some vendors followed the recommendations

of the WfMC with regard to interface 5, most vendors

have developed their own management interface as well

as their own audit log format.

Our approach aims at providing a simple but pow-

erful mechanism to render business processes, in par-

ticular BPEL process models, as manageable resources.

While it can be implemented directly on top of the in-

ternal data model of a process engine, it can also be

mapped to existing management APIs. Apache ODE2 or

IBM WebSphere Process Server (WPS)3 for instance ex-

pose comprehensive service-oriented management APIs

which can be wrapped by a management facade and

are that way accessible as manageable resources. De-

pending on the feature-richness of the originating API it

might be the case that not all features can be successfully

mapped. For instance it is impossible to realize blocking

(i.e. transactional) handlers for management events with

WPS while this is possible with Apache ODE and some

BPEL engines may not allow modifying variable values

remotely.

4. Mapping BPEL to Resource Definitions

In order to allow process model and process in-

stance data to be accessed from outside the engine in

a standardized fashion the engine has to expose its in-

ternal data structure related to the BPEL processes it

manages. In the following subsections we show how in-

dividual artifacts of BPEL process models and instances

are mapped to resources that represent the internal data

model of the engine. Exposing the internal data model as

resources has various advantages. First of all the generic

resource representation abstracts from the implementa-

2http://ode.apache.org/
3http://www-306.ibm.com/software/

integration/wps/

tion details that are used inside the engine. This allows

engine manufacturers to keep their internal data models

and wrap them with the resource model thus keeping the

optimized internal model as well as offering a standard-

ized resource representation. In case an engine does not

support the standardized resource representation, such

a representation can be layered on top of the existing

proprietary API. As a result, only the information that is

provided via the API can be represented as resources, but

still this information can be accessed in a standardized

manner.

4.1. Mapping of Process Models to Resources

Every process model that is deployed into an engine

is exposed as a separate resource. The resource repre-

senting the process model contains nested resources that

are derived from the BPEL XML document describing

the process model according to the following general

rules:

1. Every XML element with a cardinality bigger than

one is mapped to a resource, i.e. all XML elements

that can occur multiple times within their parent

element are mapped to resources.

2. Every element that can contain elements with a car-

dinality bigger than one, which are not necessarily

directly nested, are mapped to resources.

All elements that are not mapped to resources are repre-

sented as resource properties.

In the following we will show exemplarily how

these rules result in a resource based representation of a

BPEL process model. For each deployed process model

a resource is created identified by the QName of the

process. This resource has per definition two child re-

sources, one containing the process definition and the

other containing its instantiations. Figure 1 shows the

high-level mapping of process models and instances

to resources. The resource representing the process
itself is a resource according to rule 2 as it contains

for instance the variables element which in turn

contains the variable element with an unbounded

cardinality. Like the already mentioned variables
element all other nested elements of a process that con-

tain elements with an unbounded cardinality like the

partnerLinks or correlationSets are repre-

sented as nested resources of the process.

In general the name of a resource is the last location

path element of the XPath identifying the represented

element in the BPEL XML document. The name of

a resource property is the name of the represented at-

tribute or element as declared in the XML document.

Therefore each resource can be uniquely identified via

189

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 7, 2009 at 11:25 from IEEE Xplore. Restrictions apply.

1

3

1

2

3

1

2 3

4

1

2 3

4

Resource: PM A PM A PM B

PI A2 PI A3

2

Resource: 1
Resource: 2
Resource: 3
Resource: 4

4

1

3

Resource: PI A1 PI A1

2

Resource: 1
Resource: 2
Resource: 3
Resource: 4

4

M
an

ag
em

en
t A

P
I

Figure 1. Mapping of Process Models, In-
stances and Activities to Resources

the XPath according to the underlying BPEL document,

prefixed by the QName of the process model and either

/definition (in case of a process model resource)

or /instances/${instanceId} (in case of an in-

stance resource).

Handlers such as faultHandlers and

eventHandlers are represented as nested re-

sources of the resource representing a process or

scope activity they are defined in. This is because

they are nested in elements (either the <process>
element or the <scope> element) that are represented

by a resource and they contain elements that can appear

multiple times (rule 2). The root activity of a process

which is usually a flow or sequence is mapped to

a resource according to rule 2. They contain standard

elements such as sources and targets which have

an unbounded cardinality.

When mapping the flow activity to resources there

are some special characteristics that need to be consid-

ered. In addition to the activities nested inside the flow
activity, the links declared in the flow are represented

as nested resources of the flow activity resource. These

resources also contain information about transition con-

ditions that are defined when using them as sources

of an activity. Activities that are sources and targets

of links contain a property list which refers to link re-

sources. These link resources are defined as nested re-

sources of the flow activity the links are declared in.

The same principle applies to other BPEL constructs

that are referenced by other constructs. For example

partnerLinks that are referenced by interaction ac-

tivities are referenced via their resource identifier form

the resource representing the activity.

All other activities can be mapped following the

rules defined above. In an assign activity for instance

each copy operation is represented as a nested resource

of the assign activity’s resource.

Special consideration also has to be taken for BPELs

extensibility. New types of activities can be introduced

by means of the extensionActivity. Attributes

and nested elements of new activity types are rendered

as resources or resource properties according to the

rules defined above. The same principle applies to

extensionAssignOperations and any arbitrary

BPEL extension attributes and elements.

4.2. Mapping of Process Instances to Resources

The mapping of process instances to resources is

similar to the mapping of process models to resources.

In general each instance of a process model is exposed

as a separate resource. Similar to the BPEL elements

inside a process model the BPEL elements inside the

process instance are exposed as nested resources of the

process instance. The mapping rules for resources and

resource properties for the process instance resource

representations are the same as for the process model

resource representations. This ensures that process in-

stance resources can be accessed following the same

access scheme as process model resources. An activity

nested in a scope in the process model is for example

represented as a nested resource of that scope in both,

the process model resource representation as well as the

resource representation of a particular process instance.

For the ease of understanding each resource that

represents a part of a process instance is also referred to

as “instance resource”. Resources representing a process

instance or BPEL elements belonging to a particular

process instance, have additional resource properties

and nested resources besides the resources that repre-

sent (parts of) a BPEL process model. These additions

are concerned with the runtime state of the resources.

Each instance resource has an additional resource prop-

erty, the state property. It denotes the current state of

the resource. Since different BPEL elements can adopt

different states these different instance resource types

can have different state values. The possible states of a

BPEL activity for example differ from those of a BPEL

link. Table 1 lists the different resource types that have

a state property and lists the possible values of the state

property of the respective resource types.

190

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 7, 2009 at 11:25 from IEEE Xplore. Restrictions apply.

Instance Resource Notion of the state resource property and possible values
process instance specifies the current state of the process instance.

One of {instantiated, running, suspended, terminated,

faulted, complete}
activities Specifies the current state of the activity.

One of {initial, inactive, ready, dead path,

executing, waiting, terminated, faulted, complete}
loops Specifies the current state of a looping structured activity

(e.g. while, repeatUntil, forEach)

One of {initial, inactive, ready, dead path,

executing, waiting, terminated, faulted, complete,

iteration complete, check condition }
scopes Specifies the current state of the scope.

One of {initial, inactive, ready, dead path,

executing, event handling, waiting, termination handler,

terminated, complete, fault handling, compensation executing,

compensated }
links Specifies the current state of a link.

One of {undetermined, ready, evaluated, true, false}

Table 1. Notion and possible values [17] for the state resource property of process instance re-
sources

Additionally, we define a state resource prop-

erty for other instance resources such as variables,

partnerLinks and correlationSets, that may

be uninitialized or initialized.

4.2.1. Handling of repeatable constructs. Special

consideration has to be taken when representing repeat-

able activities, i.e. structured activities that execute

a set of activities multiple times either in parallel or

sequential. Such structured activities include while,

repeatUntil, forEach and eventHandler. For

each iteration of the repeatable activity a new resource

representing the directly nested activity is added as a

sub-resource of the resource representing the repeatable

activity. As a result it is possible to access individual

iterations of the repeatable activity. Figure 2 shows this

for the example of a while activity. For each iteration

of the directly nested activity of the while activity a

new resource is created. This resource is annotated with

the number of the iteration and contains all the nested

activities and their values during the iteration of the struc-

tured activity it represents. The number of the iteration

is only added for the sequential loops and can be used

to determine the sequence of the individual iterations. A

monitoring tool for instance is then able to display the

data for the separate iterations of the loop (i.e. differ-

ent variable values if the variable is declared inside the

loop) by simply accessing the different resources that

represent the iterations of the loop.

Fault handlers, termination handlers and compensa-

tion handlers are treated as normal nested activities of a

scope.

4.3. Events and Notifications

During the execution of process models BPEL en-

gines typically produce a continuous stream of events

that indicate various status changes, like for instance

the creation of new process instances, variable value

changes, etc. Monitoring applications can highly ben-

efit of being subscribed to such an event stream. That

way it is possible to observe the engine regarding its

healthiness or even to measure business relevant key

performance indicators (KPIs). However, propagating

such an unfiltered stream of events to monitoring ap-

plications may lead to severe performance issues. In

our approach, observers can subscribe to manageable

resources, i.e. to single parts of a process model or even

to a single process instance. When registering for certain

events on a process model resource, the events are also

propagated for each instance of this resource. Events

are only produced for those status changes a subscriber

is registered to; that way the event stream is filtered

on a fine-grained level and consequently the overhead

caused by producing events can be minimized. In case

a subscriber is registered to a resource, each change of

a resource property raises an event. Beside the status

of activities, changes of variable values and partnerlink

EPRs are in particular of interest, as a possible property

191

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 7, 2009 at 11:25 from IEEE Xplore. Restrictions apply.

While

Sequence

Assign

BPEL

Invoke

Assign

Resources

Process model
resources

While Resource

Sequence Resource

Assign Resource

Invoke Resource

Assign Resource

Process instance
resources

While Resource

Sequence Resource
[Iteration 1]

Assign Resource [1]

Invoke Resource [1]

Assign Resource [1]

Sequence Resource
[Iteration 2]

Assign Resource [2]

Invoke Resource [2]

Assign Resource [2]

...

Sequence Resource
[Iteration N]

Assign Resource [N]

Invoke Resource [N]

Assign Resource [N]

Figure 2. Mapping of BPEL loops to process model and process instance resources

change may be overridden by an external subscriber and

replaced by another value; this enables an AOP-like pro-

gramming model for BPEL processes. In such scenarios

it is important that event notifications are propagated

in a transactional and blocking fashion to ensure that

the event-triggering resource has not been manipulated

meanwhile.

4.4. Audit Trail Information and Resources

Most implementations of BPEL engines distinguish

data of running instances of processes which is persisted

in a runtime database and data about finished instances

of processes which is persisted in an audit trail. Fin-

ished process instances are instances that are no longer

running, for example instances that have successfully

completed, have been terminated, faulted or compen-

sated. In order to facilitate access to the audit trail, we

propose to use the same access scheme for the audit trail

data that we use for the running instance data.

Thus, our approach is also beneficial for e.g. assur-

ance frameworks which analyze the audit trail informa-

tion to detect whether regulations and laws were taken

into account accurately during execution.

In particular that means that for each finished in-

stance of a process model the information can be ac-

cessed via a resource representation that corresponds

to the resource representation of the running instances.

This approach also allows mixing the process execution

data and audit trail data in the resource representations.

Therefore each instance resource contains a nested read-

only “audit trail data” resource that represents the entries

in the audit trail that are available for this resource. These

entries include resource property changes such as state

changes, value changes, the date and time of the changes

and other information kept in the audit trail (cf. [24]).

Changes performed from the outside of the engine on

the resources are also logged in the audit trail and are

therefore included in the audit trail data resource.

5. Scenario

We illustrate the application of the resource-based

management framework for BPEL processes based on

a “Hello World” BPEL process as depicted in the right

part of Figure 3: The process performs three basic activ-

ities that are nested inside a sequence activity. The first

activity receives a message from a partner, the second

one writes a string to the variable answer, and the third

activity sends a message back to the partner. The arrow

denotes the state of execution, i.e. the engine has not

yet executed the assign activity. Figure 3 shows only

the resource representing the variable answer in full

detail, whereas all other resources are not shown com-

pletely in order to keep the figure simple. The figure

shows the resource representation of the variable in a

192

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 7, 2009 at 11:25 from IEEE Xplore. Restrictions apply.

Helloworld.BPEL
Process instance resource

Nested resources
<process…>
 <variables…>
 <variable name=“answer“
 type=“xsd:string“/>
 ...
 </variables>
 <sequence…>
 <receive…/>
 <assign…/>
 <copy…>
 <from …/>
 <to variable=“answer“>
 </copy>
 </assign>
 <reply…/>
 </sequence>
</process>

Variable instance resource

Properties
ID = var1
Name = answer
Type = xsd:string
State = uninitialized
Value =

Sequence instance resource

Nested resources

Receive instance resource

Assign instance resource

Reply instance resource

Figure 3. Hello World process and resource representation

state of the process instance where the variable has not

been initialized yet. This is indicated by the state
property of the variable instance resource that is set to

uninitialized. In case a management tool would

perform a get operation on the variable instance resource

identified by the id “var1”, it would get the resource as

shown in Figure 3.

After the assign activity that writes to the answer
variable has been executed the state property of the

answer variable is set to initialized. This state

is shown in Section 4. Additionally the value property

of the answer variable is set to the value that was as-

signed to the variable (“HelloWorld” in this case). In

case a monitoring tool would now perform a get oper-

ation on the resource “var1”, it would get the resource

as shown in Figure 4. In addition to the “raw” resource

data the tool could now perform a get operation on the

nested audit trail data and could retrieve all audit data

that has been logged for the resource “var1”. In case

of the variable the audit data can be used to determine

which values have been assigned to the variable during

the runtime of the process instance. This can be very

important for example for debugging or process mining.

In case an administrator needs to perform changes in

the process instance, the corresponding management

tool can perform put operations on the resource to up-

date it. For example a management tool could allow an

administrator to change the value of the variable from

“HelloWorld” to “HelloWorldModified” by performing

a put operation on the resource “var1” that contains the

new value. Changing variable values and other data in

a process instance is an important task that needs to be

performed by administrators to repair faulted process

instances. Given a well-designed process model, pro-

cess instances mostly fault because of non-foreseeable

occurrences. In these situations the approach proposed

in this paper is very important as it allows to arbitrarily

changing any property in a process instance to repair

the process instance. The question left open in this ex-

ample so far is: How does the management tool know

when the state or the value of the variable has changed

without constantly polling the resource? Since polling

would require a lot of get operations on resources and

therefore would put an unnecessary load on the engine,

a different mechanism must be employed. In order to

be notified about property changes of the variable, the

monitoring tool can subscribe to a property of a resource

(in this case the “var1” resource). The engine then sends

an event to the subscribers if the property changes. The

subscribers can then access the changed resource and

other resources in order to retrieve the necessary data

they require upon such a resource change.

193

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 7, 2009 at 11:25 from IEEE Xplore. Restrictions apply.

Helloworld.BPEL
<process…>
 <variables…>
 <variable name=“answer“
 type=“xsd:string“/>
 ...
 </variables>
 <sequence…>
 <receive…/>
 <assign…>
 <copy…>
 <from …/>
 <to variable=“answer“>
 </copy>
 </assign>
 <reply…/>
 </sequence>
</process>

Variable instance resource

Properties
ID = var1
Name = answer
Type = xsd:string
State = initialized
Value = HelloWorld

Nested Resources
audit trail data

8:35:02 value = HelloWorld
8:34:59 state = initialized
...

Figure 4. Hello World process after assign com-
pleted and resource representation

6. Suitable Technologies for the Manage-
ment Infrastructure

In contrast to a traditional service-

oriented management API (providing opera-

tions like getActivityStatus(aid) or

getVariableValue(varname)), resource-

orientation allows to browse process models and their

instances and thus enables a reflective interaction

model with a BPEL engine supporting a resource

oriented access scheme. Instead of first explicitly

asking for an ID of a deployed process model and

querying its running instances by passing this ID, our

resource-oriented approach makes such data available

in a more convenient manner: Since the resource

tree is modelled following the BPEL meta-model, the

location of requested data can be derived according

to the BPEL process definition. Modelling and using

manageable resources for process management forms

some requirements on the technical level which can be

tackled by the numerous management infrastructures.

There are numerous management solutions available

of which we present the three most relevant including

a discussion on their suitability for implementing our

approach.

6.1. JMX

The Java Management Extensions (JMX) [16] adds

management facilities to Java’s runtime library. JMX

can be used to e.g. manage JEE application servers

or CPU/memory load of java programs locally as well

as remote via RMI, HTTP or Web services. The man-

agement interface, a so called MBean is basically an

ordinary Java interface defining all management oper-

ations to be exposed. Getters and setters are automati-

cally recognized and exposed as attributes (readable and

writable), all other methods are exposed as operations to

allow invoking arbitrary management code. JMX also

supports publish/subscribe-like notifications. Once mod-

elled, MBeans are registered to an MBean server using a

specific name which identifies that MBean in the server’s

context. These names can be organized hierarchically.

That way our approach to resource-oriented BPEL man-

agement can be realized using JMX. Resources are ren-

dered as MBeans, resource properties are attributes in the

JMX terminology and events are pushed to client appli-

cations via JMX’s notification mechanism. Nested sub

resources can be realized with an appropriate tree-based

naming scheme.

6.2. REST

Representational State Transfer (REST) [8] is a pop-

ular architectural style for resource-oriented distributed

systems like the World Wide Web. REST utilizes the

four most popular HTTP [9] verbs, GET for retrieving,

PUT for updating, POST for creating and DELETE for

deleting a resource. Resources are uniquely identified

using URIs [5] and are interlinked using hyperlinks to

make the resource model browsable for humans as well

as machines.

By using a smart URI design it is possible to distin-

guish between resources and collections (i.e. resources

containing only hyperlinks to resources). That way it

is possible to express sub-resources as required by our

approach. Notifications are not directly supported by

RESTful architectures. However there exist extensions

(e.g. GENA [7], RNA [15]) that enable publish/sub-

scribe behaviour either via asynchronous communica-

tion channels or via polling. To fully support our require-

ments polling for new notification events is not sufficient

as it does not allow transactional/blocking event process-

ing.

6.3. WSRF

The Web Service Resource Framework (WSRF)

facilitates an approach to accessing Resources in a

Web services environment. WSRF is a foundation of

standards for defining, accessing, and managing state-

ful Web services (i.e. resources) defined using WS-

Resources [11]. Such a resource defines resource prop-

erties which can be read, modified and queried by us-

ing WS-ResourceProperties [12]. Also of relevance is

WS-Notification [20] which defines how to push infor-

mation to subscribed services. Thus it meets all require-

ments our approach imposes on a suitable implementa-

tion framework.

194

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 7, 2009 at 11:25 from IEEE Xplore. Restrictions apply.

Other approaches towards implementing our pro-

posal based on WS-* technologies are (i) using Web

Services Distributed Management (WSDM) which de-

fines techniques for the management of Web services

(MOWS) [13] using Web services (MUWS) [14] or (ii)

creating a custom solution based on WS-Transfer [2] in

combination with WS-Notification.

7. Implementation

As a proof of concept we have built a prototype that

implements our approach towards a Management Frame-

work for BPEL. It is based on the Apache ODE BPEL

engine [4]. ODE is an Open Source BPEL engine, avail-

able under the Apache Software Licence 2.0. Further-

more we used the WS-ResourceFramework, mentioned

in section 6, to build the Web service that is responsi-

ble for resource management. This interface could also

easily be implemented with JMX [16] or REST [8]. For

issuing events the WS-Notification framework [20] is

used.

We extended the Apache ODE BPEL engine with

a new Web service that provides the interface for the

Management Framework for BPEL. The corresponding

WSDL contains all WSRF functionality plus some WS-

Notification functionality for subscribing to an event.

Operations derived from the WSRF specification are

for example GetResourcePropertyDocument or

SetResourceProperties. Operations to manage

running processes like suspend to pause a running

process or terminate to terminate a running process

are already provided by the standard Web services of

ODE.

To run BPEL processes in ODE the XML document

that represents a process has to be compiled into the

internal object model for processes of ODE. This is

done automatically with all BPEL documents that are

placed in the processes subfolder of an ODE installation.

In our prototype we map this object model of every

instance of a deployed process to WS-Resources

like depicted in section 4. These WS-Resources are

just an representation of the internal object model of

the engine and they are accessible through the Web

service we added to ODE. Every query to this Web

service is routed to the corresponding object of the

internal object model of the desired process and the

desired operation is executed. To address resources

of a running process XPath expressions are used.

The XPath expression must be built based upon the

XML representation of the process containing the

desired resource. The XPath expression to address a

resource must be extended on the left side by adding

/${procQName}/instances/${instanceId}.

A valid XPath expression could look like this:

/{urn:iaas}helloWorld/instances/
233/process/sequence/receive.

To subscribe to an event every WS-Resource has a

subscribe operation. This operation was taken from

the WS-Notification specification. To enable ODE to

detect property changes on its internal object model for

processes every object now extends the abstract class

BpelEvent so that event listeners could be registered on

these objects in order to determine property changes. If

such property changes are detected the clients subscribed

to these events are notified.

Another Web service was created by using the

WSDL documents from the WS-Notification specifica-

tion to provide an interface for issuing events. In our

prototype the events that are already implemented in the

ODE BPEL engine are supported. In future we want to

completely implement the BPEL event model [17].

8. Conclusion and Outlook

In this paper we presented an approach towards rep-

resenting engine internal process models and instances

as resources in an engine-independent manner. The ap-

proach enables interoperable resource based manage-

ment of WS-BPEL processes. We showed a mapping

from BPEL process models and instances to resources

and presented scenarios that benefit from our approach in

a sense that it provides for a more convenient and precise

manner to register for events. In contrast to subscribing

to proprietary events of BPEL engines, the resource-

based approach allows subscribing to resource property

changes. The resource-based approach thus prevents

the emission of a potentially huge set of engine-defined

events that are not important for any further processing.

We demonstrated the applicability of our approach by

means of a proof-of-concept implementation based on

the Apache ODE BPEL engine.

This paper mainly focuses on how to represent en-

gine internal process models and instances and how to

access this data. In future work we will further describe

how the manipulation of process model and process

instance data influences the execution of WS-BPEL pro-

cesses. This will involve a thorough examination of

resource properties that can be changed at any time and

properties that can only be changed under certain condi-

tions during runtime of a process instance. This is of par-

ticular importance as for example the change of the status

of a link has thorough influence on the execution of a

whole process instance. Our future work also includes re-

search on how the resource based management approach

we presented for WS-BPEL engines can be extended for

middleware supporting other WS-* standards (such as

195

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 7, 2009 at 11:25 from IEEE Xplore. Restrictions apply.

WSDL, WS-Addressing, WS-Coordination etc.). Fur-

thermore, we will investigate how Complex Event Pro-

cessing (CEP) [19] can help to reduce and customize the

events emitted by the BPEL engines and to define KPI-

related rules directly in the management infrastructure.

Acknowledgements

The work published in this article was partially

funded by the SUPER project4 under the EU 6th Frame-

work Programme Information Society Technologies Ob-

jective (contract no. FP6-026850) and the MASTER

project5 under the EU 7th Framework Programme In-

formation Society Technologies Objective (contract no.

FP7-216917).

References

[1] Agrawal, A. et al. WS-BPEL Extension for People

(BPEL4People), Version 1.0, 2007.

[2] Alexander, J. et al. Web services transfer (ws-transfer).

W3C Member Submission, W3C, Sept. 2006.

[3] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,

F. Curbera, M. Ford, Y. Goland, A. Guı́zar, N. Kartha,

C. K. Liu, R. Khalaf, D. König, M. Marin, V. Mehta,

S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web

Services Business Process Execution Language Version

2.0. Committee Specification, OASIS Web Services Busi-

ness Process Execution Language (WSBPEL) TC, Jan.

2007.

[4] Apache ODE Team. Apache ODE BPEL Engine.

[5] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform

resource identifiers (uri): Generic syntax. Internet RFC

2396, August 1998.

[6] Case, J. and Fedor, M. and Schoffstall, M. and Davin,

J. A Simple Network Management Protocol (SNMP),

1990.

[7] J. Cohen and S. Aggarwal. General event notification

architecture base. Internet draft, Internet Engineering

Task Force, July 1998. Expired.

[8] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, Uni-

versity of California, Irvine, Irvine, California, 2000.

[9] R. T. Fielding, J. Gettys, J. C. Mogul, L. Masinter, P. J.

Leach, H. Frystyk Nielsen, and T. Berners-Lee. Hyper-

text transfer protocol — http/1.1. Internet Draft, HTTP

Working Group, March 1998.

[10] M. Fowler. Inversion of Control Containers and the De-

pendency Injection pattern, Jan. 2004.

[11] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson,

and I. Sedukhin. Web services resource 1.2 (ws-resource).

OASIS, January, 2006.

4http://www.ip-super.org/
5http://www.master-fp7.eu/

[12] S. Graham and J. Treadwell. Web services resource

properties 1.2 (ws-resourceproperties). OASIS, April,
2006.

[13] I. S. Heather Kreger, Kirk Wilson. Web Services Dis-

tributed Management: Management of Web Services

(MOWS 1.1). OASIS Standard, OASIS Web Services

Distributed Management TC, Oct. 2006.

[14] W. V. Heather Kreger, Vaughn Bullard. Web Services

Distributed Management: Management Using Web Ser-

vices (MUWS 1.1) Part 1. OASIS Standard, OASIS Web

Services Distributed Management TC, Oct. 2006.

[15] S. Jacobs. Rna: Restful notification architecture. Draft,

July 2003.

[16] JSR 3 Expert Group. Java management exten-

sions (JMX). JSR 3, Java Community Process,

2000. Available at http://www.jcp.org/en/
jsr/detail?id=3.

[17] D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek,

and F. Leymann. BPEL event model. ”Technical Re-

port Computer Science” 2006/10, University of Stuttgart,

Faculty of Computer Science, Electrical Engineering,

and Information Technology, Germany, University of

Stuttgart, Institute of Architecture of Application Sys-

tems, November 2006.

[18] M. Kloppmann, D. Konig, F. Leymann, G. Pfau, A. Rick-

ayzen, C. von Riegen, P. Schmidt, and I. Trickovic. WS-

BPEL Extension for Sub-processes – BPEL-SPE. Joint
white paper, IBM and SAP, 2005.

[19] D. Luckham. The Power of Events: An Introduction
to Complex Event Processing in Distributed Enterprise
Systems. Addison-Wesley Professional, 2002.

[20] OASIS Web Services Notification (WSN) TC. Web ser-

vices notification 1.3. OASIS, Oct. 2006.

[21] K. Swenson, J. Ricker, and M. Krishnan. Asynchronous

Service Access Protocol (ASAP), May 2005.

[22] K. D. Swenson, S. Pradhan, and M. D. Gilger. WfXML

2.0: XML Based Protocol for Run-Time Integration of

Process Engines. WfMC Draft, WfMC, Oct. 2004.

[23] K. D. Swenson, S. Pradhan, M. D. Gilger, M. Zukowski,

and P. Cappelaere. WfXML 2.0: XML Based Protocol

for Run-Time Integration of Process Engines. Draft 0.4,

WfMC, Jan. 2008.

[24] W. van der Aalst, B. van Dongen, J. Herbst, L. Maruster,

G. Schimm, and A. Weijters. Workflow mining: A survey

of issues and approaches. Data & Knowledge Engineer-
ing, 47(2):237–267, 2003.

[25] S. Weerawarana, F. Curbera, F. Leymann, T. Storey,

and D. Ferguson. Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR

Upper Saddle River, NJ, USA, 2005.

[26] Workflow Management Coalition. Workflow Manage-

ment Coalition Audit Data Specification. WfMC Techni-

cal Report, WfMC, Sept. 1998.

196

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 7, 2009 at 11:25 from IEEE Xplore. Restrictions apply.

